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Abstract. In this paper a new factorization tech-
nique for computation of inverse of mass matrix,
M:’, and the operational space mass matrix, A, as
arlsm  m implementation of the operational space

5contro scheme, is presented. This  techru ue re-
1suits in Schur Complement factorization o both

M-1 and A and subsequently new O(N) algorithms
for their computation. These O(N) algorithms are
highl efficient for parallel computation. To our
know ed e, they re resent the first algorithms that

‘5 r f“can be fu ly paralle Ized resultin  m both time- and
processor-optimal aral)el  algorl  hms. Using these

8algorithms, the O C scheme can be implemented
with  an optimal efficiency in both serial and paral-
1~1 environment. However, i-n addition-to computa-
tional effi~lency, these algorithms prowdes  a deeper
physical mslghj  into the structure of computation
which can be exploited for a better design of task
space control schemes.

Key Words: Robot Dynamics and Coni@,  Opem-
ilonal  Space Control, Paralle! Compuiaiton

I. Introduction
Consideration of dynamics is essential in the

design, analysls,  and control of robot manipulator
systems. Most of the reposed approaches to dy-

#namic control are base on the j?int-space dynamic
models. However, task specdlcatlon  for mohon  and
contact forces, dynamics, and force sensing feed-
back are closely linked to the End-Effecter (EE),
i.e., they are defined in the operational space (the
Cartesian task space) of the robot manipulators.
Thus, the dynamic behavior of the EE is one of
the most significant characteristics in evaluating the
performance of robot manipulator systems [1]. The
EE dynamic modeling and control is also of par-
ticular importance for tasks that involve combmed
motion and contact forces of the EE.

To allow the description, analysis, and control
of manipulator systems with respect to the dynamic
characteristics of their EEs, Khatib [1,2] has sug-

~ormulation  enables the description of both dynam-
ested  the Operational Space formulation. This

im and control strategies at the EE level. How-
ever, the Operational Space Control (OSC)  scheme
is si nificantly  more computation-intensive that }he

fjoin -space dynamic control strategies. The Jolnt-

[
s ace control schemes require the computation of
t e inverse dynamics of the manipulator at the joint
level, which can be efficiently accomphshed by using
the O(N) recursive Newton-Euler (N-E) formula-
tion [3]. The OSC scheme, in addition to the inverse
dynamics, also requirea the computation of the in-
verse of Joint-Space Mass Matrix, At-1, which cor-
responds to the solutlon  of forward dynamics prob-
lem, and the Operational Space Mass Matrix, A.

In [4] a recursive O(N) algorithm for computa-
tion of A is developed. A recursive O(N) algorithm
for computation of A-l is presented in [5]. Once
A -1 (A) is obtained then A (A-l) can be computed
by inverting a 6 x 6 matrix with a coat of O(l).
The O(N) algorithms in [4,5] along with the O(N)
algorithms for forward dynamics [6,7] can be used
as a set of optimal serial algorithms for. implemen-
tation of the OSC scheme. However,. m order to
meet the real:  time con~traints  m th: lmplementa-
tlon,  further ylgmfi:ant  Improvement m the comput-
ational @iclency  ?s needed. It }s clear that, given
the r+atlve maturl~y  of the serial algorlthms~  any
such Improvement m the computa~ion.al  efficlenc

1’can be.onl  achieved through exploitation of para -
{lehsm  m t e computation.

However, there. seems to be no report on the
development of efficient parallel algorithms for com-
putation of A and/or A- 1. The O(N) algorithms in
[4,5] r=ult in a set of nonlinear recurrences which
are similar to those arising in the O(N) algorithms
[6,71 for forward dynamics problem. An extensive
analysis of efficiency of these recurrences for par-
allel computation is presented in [8,9] wherein it
has been shown that they are strictly sequential,
that Is, regardless of th~ number of processors em-
ployed, their computation can be speeded up only
by a small constant factor. As a result, the O(N)
algorithms in [4,5] are also strictly sequential and
cannot be efficiently parallelized.

In this paper, starting with a recently devel-
o ed factorization of M-1 in form of Schur Com-

Yp ement, we derwe  new Schur Complement factor-
ization for A-1 and A. These factorization result in
novel algorithms for implementation of OSC scheme
with the following advantages over the existing al-
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gorithms:

1. Optimal Serial Efficiency: They have an
optimal complexity of O(N) for a sequential
implementation. More importantly, they are
more et%cient (in terms of number of opera-
tions) than the previous algorithm since they
exploit a larger degree of synergism between
the computation of M-l and A-l or A.

2. 0 timal Parallel Efficiency: They can be
Ffu ly parallelized  leading to time lower bound

of O(Log  N), by using an optimal number of
O(N) processors. In addition to such a the
oretical  significance, they are also high] effi-
cient for practical Implementation on &MD
parallel architectures.

3. Deeper physical lnsi ht: The factorjzations
falso provide a deeper p ysical mslght  mto the

structure of computation. This property can
be further explolted  to gain a better under-
standing in the design of control schemes.

In this paper, due to the lack of s ace, we
Cf”mainly concentrate on the mathematical erlvation

of the algorithms and a brief analysis of thei~ effi-
ciency for serial and parallel com utation. Thw  pa-
per is organized as follows. In $1 ~ the OSC scheme
w briefly reviewed and its computational complex-
ity is analyzed. Notation and some preliminaries
are presented in $111. In $IV, Schur Complement
factorization of M-l is reviewed. Schur Compl&
ment factorization of A- 1 and A are derived in SV.
The serial and parallel efficiency of the algorithms
are briefly discussed in $VI. Finally, some conclud-
ing remarks are made in $VII.

‘II. Operational Space Dynamic For-
mulation
A. Formulation

In this section we breifly review the operational
space dynamic formulation. More detailed discus-
sion can be found in [1,2]. The manipulator joint-
space dynamics is given by

MQ+C+G=I’ (1)

where G(Q) and C(Q, Q) are the gravitional  and
coriolis/centri fugal force+  respectively. The opera-
tional space dynamics is given by [1,2]

AVN+I  +C+ g = FN+I (2)

where AL@x6 is the O erational Space Maas Ma-
c?trix. The terms ~ an C are the gravitional  and

coriolis/centrifugal  forces described at the EE level.
The spatial force, velocit~,  and acceleration of the
EE are related to the joint forces, velocities, and
accelerations as follows:

r = j’tFN+l (3)

Equation (1) can be written as

Q+ M-’(C+G)=M-lr (6)

Premultiplying  Eq. (6) by f (=uming  Y is non-
singular), we get

flfj + 3M-l(C + G) = flM-lr (7)

Substituting Eqs. (3) and (5) into Eq. (7) gives

h+l + flM-l(C+ G) – ~(j = ~M-lflt~N+l

(t7M-1~’)-lVN+~  i- (fM-l@)-l

(J’M-l(C + G) - jfj) = FN+l
(8)

Comparing Eq. (8) with Eq. (2), and distinguish-
ing bet ween velocjt  y-dependent and non velocity-
dependent terms, lt follows that

C = A(J’M-%–  @) (lo)

Equations (9)-(1 1) describe the relationships be
tween the operational space and “oint s ace quan-
tities. A decoupled and linearized EE $namlcs of
the form V~+l = u can be then obtained by a feed-
back linearization scheme given by [1]

FN+I  = A(u  +UM-l(C + G) – jQ) (12)

B. Computat ional  Complexity Analysis

The algorithms presented in this paper can be

)
used for the evaluation of Eqs. (9)-(11 . However,
such an evaluation is more suitable or dynamic
analysls  than control. In the following, we concen-
trate on the efficient implementation of controller
given .by Eqs. (12)-(13).
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The computation of the nonlinear term (C+fl)
can be achieved  by computing the N-E formula-
tion while setting Joint  accelerations to zero, I.e.,
with Q = O. There have been several reports on
the development of the numerical methods for com-
putation of the matrix ~ (see, for example, [13]).
Howe.v~r, only the explicit computation of the vec-
tor $Q rather than the matrix ~ is needed. In
this sen?e! based on its physical interpretation, the
vector UQ can be obtained with a small cost as a
by-product of computation of the term (C+G).  To
see this, note that if in Eq. (5) the vector Q is set. .
the zero then the resulting vector V~+l = 3Q rep-
resents the EE spatial acceleration due to the joint
velocities. Therefor9,  lf the forward recur. won m
the N-E formulation !s sli htly  modified to compute

fthe spatial acceleration o the EE then, by setting
Q = 0, both the terms (C+G)  and Vfi+l can be
computed. In fact, as is shown in [12], even if the
matrix ~ is explicitly computed, then its multipli-
cation by the yector  Q results in a slightly modified
forward recursion of the N-E formulation. As a r~
suit, by using the N-E formulation the serial com-
putation of the vectors (C+G)  and v~+l can be

)1performed with a cost O(N). As is shown in 14,
the computation of the N-E formulation can be ully
parallelized  and performed in a time of O(Log N)
by using O(N) processors.

For an efficient implementation of Eq. (12) the
oPerator application of M-1, i.e., its multiplica-
tion  b a vector which is e uivalent  to the solu-

{ %tion. o. forward dynamics pro Iem, ra~her than its
e~ llcl~ com.putatlon  M needed. By using th~ alg-

{rlt m m this paper, such an operator apphcatlon
can be performed in O(N), in a serial fashion, and
in O(Log  N) with O(N) processors in a fully paral-
lel fashion. Note also, that the ex lici} computation

l’”of 3 M not needed since the mu tlphcatlon of vec-
tor by $, in Eq. (12), or fit, in Eq. (13) can be

r
erformed in a recursive fashion involvin simple

%mear recurrences. These recurrences can e com-
puted with a cost of O(N) in a serial fashion and
with a cost of O(Log  N) by using O(N) processors,
in a parallel fashion.

As will be shown, our algorithms allow O(N)
serial and O(Log N) with O(N) processors parallel
com utation of A. This result demonstrates that

8the SC scheme can be implemented with an opti-
mal serial and, particularly, parallel efficiency.

III. Notation and Preliminaries
A. Spatial and Global Notation

In the following, we use spatial and global nota-
tion  which allow a compact representation of deri.va-
tlon  of various. factorization. For the sake of s~m-
plicity  only Joints with one revolute  DOF are con-
sidere~  here. However, the results can be extended
to the joints with different and/or more DOFS.

With an vector V, a matrix ~.4323x3 can be
{associated w ose representation in any frame is a

skew symmetric matrix:

where V=, VY, and Vz are the components of V in the
frame-conside~ed.  Th~ matrix ~ has the properties
that  V’ = –V a n d  VIV? = V1 x V2 , i.e., it is a.
vector cross-product operator. A matrix VC3?6X6
associated to the vector V m also defined as

[ ‘1v=:; [ 1Uo
and Vt = _p u

where here (and through the rest of the paper) U
and O stand for unit and ze~o matrices o! ap ropri-

l’ate size. The spatial velocItms of two rlgld y con-
nected points A and B are related as

where PA,B  denotes the position vector from B to
A. The matrix PA,B has the properties as

P~,BPB,c  = PA,C and ~~,~ = PB,A (14)

The spatial forces acting at two rigidly connected
points A and B are related:

F B = @A,BFA

If the linear and angular velocities of point A are
zero then

VA = fi~,&B

The spatial inertia of link i about point j iq denoted
by Ii~.  The spatial inertia of link i about lts center
of mass is designated as li,ci. The spatial inertia of
link i about point Oi (denoted aa Ii) is obtained aa

Equation (15) represents the parallel azis theo-
rem for propagation of spatial inertia.

A bidiagonal block matrix P@ R6Nx6N is de-
fined as

o I

h :0 ‘~N_2  U
‘P= o 0

0 0 –P1 u 1

Note that, according to our notation, Pi+l,i = pi.

Il. Operator Expression of Jacobian Matrix

.
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Following the treatment in [5], a factorization
of Jacobian matrix by using our notation is derived
as follows. The velocity propagation for a serial
chain of rigid bodies is given by (Fig. 1 )

which, b using the matrix P, can be expressed in
fa global orm as

Prv =?@ ~ v = (P’)-wj (17)

The EE spatial velocity, VN+l, is obtained by writ-
ing Eq. (16) fori= N+ 1 as

Defining /? = [Pfi,  O, 0, . . . . 0]@?6x6~,  from Eqs.
(17)-(18), we get

VN+I = pv = p(P’)-’?(Q (19)

Comparing Eqs. (4) and (19), an operator expres-
sion (or, a factorization) of Jacobian matrix is then
given by

3 = /?(P*)-’H (20)

C. Equations of Motion

The equations of motion given by Eq. (1) can
be written as

MQ = I’ – C(Q, Q) – G(Q), o r

where ~T = col{FTi} = I’-C(O, Q)- G(Q) A?N”l
represents the acceleration-dependent component of
the control force. Rom Eq. (21) the multi body sys-
tem can -be assumed as as stem at rest which upon

{apphcatlon of the Contro force ~’f accelerates in
space. The propa atlon of a~celerations  and forcesfamong the hnks o serial chain are then given by

Fi = Ii~ +PiFi+l (23)

which represent the simplified N-E algorithm (ex-
cluding the nonlinear terms) for the serial chain.

- WMS:hur Complement Factorization

A. Interbody Force Decomposition Strategy

In this section we briefly review a recently de-
veloped factorization of M -1 [9,10] to establish the
basis for developing a similar factorization for A-1
and A. This new factorization is based on a rather
unconventional decomposition of interbody force of
the form:

F i = HiFTi + Wi Fsi (24)

where Fsi is the constraint force. The rejection
?matrices I{i and W i are taken to satisfy t ~e follow-

ing orthogonality conditions:

[I~Hi =U, W/Wi = U, W/Hi = O (25)

HiH~ + WiW~ = U (26)

Note that the projection matrices are taken to be
block diagonal ion }he rotational and. translational
coordinates. This lmphes  that there 1s no coupljng
between the degrees of freedom, thereby precluding
dimensional inconsistency (see [9] for a more de-
tailed discussion.) For a joint i with multiple DOFS,
say /i < 6 DOFS, Hig%6x’i and Wi&%6x[6-’lJ.

The decomposition in Eq. (24) naturally leads
to the explicit computation of the constraint forces.
In fact, researchers have often ar ued that since the

fconstraint forces are nonworking orces their explicit
evaluation, which leads to the computational inef-
ficiency, should be avoided. Interestingly, however,
the decomposition in Eq. (24) leads to new fac-
torization of M-l, A-l, and A-l and subsequent
optimal serial and parallel algorithms.

B. Factorization of M - l

In [9,10], it has been shown that the force de-
composition in Eq. (24) leads to a new Schur Com-
plement  factori~ation  of M-.l.. Here, we briefly re-
view this factorization since lt 1s needed for deriva-
tion of the factori~ation  of A-1 and A. To begin,
let us define following global matrix and vector for
i= Ntol:

W ~ diag{ Wi}&3?6Nx5N;  75 ~ col{F5i}&85N

Equations (22)-(26) can be now written in global
form as p$=~Q (27)

PF = Zb (28)

7 = 7WT  + W7S (29)

XIX = U, W iW= U, and W:H = O (30)

7-LV: + Wwt  = u (31)

From Eqs. (27), (28), and (30) it follows that

)-@pfj = )“vtH(j = o (33)

and from Eqs. (32)-(33), we get

wtptrlp~ = (1 (34)

Substituting Eq. (29) into Eq. (34) yields
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From Eqs. (35) and (29) it follows that

x = (H - w(w:p~z-lpw)-lw~  p’z-’pfi)r~
(36)

Multiplying both sides of Eq. (27) by W and from
Eq. (30), Q is then computed as

W%Q = 7itP’v * Q = 7itPtv (37)

Finally, by computing ~ from (32) and (36) and
substituting it into (37), we get

Q =(?i’P’rlP?i – 7WI-W’V
(W’PT’P W)-1 W’P’Z-1PH)7-T

(38)

In comparison with Eq. (21), an operator factoriza-
tion of M-1, in terms of its decomposition into a
set of simpler operators, is given by

M-l= c_@d-lB (39)

A = WtptI-lpWE~SNX5N

B = Wtpt~-~p~c~5NxN

c = 7iiP’z-lP?i&9?NxN
Note that, d and B are block tridia onal matrices
and C is a tridiagonal matrix. Also, %oth  A and C
are Symmetric Positive Definite (SPD)  [10].

The operator form of M-l given by Eq. (39)
represents an interesting mathematical construct.
If a matrix Z1 is defined as

then M-1 is the Schur  Complement of.A in L . The
structure of mat~ix  cl not only rowdes  a eeper

t!” $physical insi ht mto the compu atlon  but lt alm
8“motivates a lfferent  and a much simpler approach

for derivation of the factorization of M-l [10,11].

V. Schur Complement Factorization
of A-l and A

A. Schur Complement Factorization of A - 1

The factorization of M -1 directly results in a
new factorization of A-1. This factorization is. de-
rived by substituting the factorization of Y, gwen
by (20), and M-l, given by (39), into (9):

which can be written as

A-l = /3(Pi)-l(7f7fi)Pt(X-l  –Z-lPW

(WWX-lPW)-1 wtp’rl)p(fi~’ )p-lflt (40)

The key to simplification of this expression is the
fact that, from Eq. (31), we have

fi?tt = u – WI’@ (41)

By replacing Eq. (41) into Eq. (40) and after some
involved algebraic manipulations, a simple operator
expression of A- 1 is derived as

A-l =flZ-lflt – @-lPW(WtP:Z-lPW)-l
wtpt~-lpt

(42)
This expression can be further simplified since

&t = ~~-lpw = [P~I;lwN, 0, . . . . o]#x5N
(43)

D = ~-l~t = F~I~lPN (44)

The parallel axis theorem in Eq. (15) can be also
used for propagation of the inverse of spatial inertia.
By using Eq. (14), Eq. (44) can be written as

D =((PN)-l(ZN)(F~  )-l)-l
(45)

=  (~N+I,NZN~k+I,N)-l = ~i~N+I

that is, D is just the inverse of spatial inertia of link
N about point ON+l. The factorization of A-l can
be written in form of Schur Complement as

A-l = ~–@A-~& (46)

Note that the matrix A is the same as in Eq. (39).
If a matrix Z2 is defined as

La = [1A&
&t D

#N+6)x(SN+6)

then A-1 is the Schur Complement of A in L2.

B. Schur Complement Factorization of A

Once A-1 is computed and assuming that its
inverse exists (i.e., A-1 is nonsingular), A can be
then obtained by a 6 x 6 matrix inversion. However,
this corresponds to a numerical evaluation of A. In-
terest ingly, it is pooswbl~  to derive a factori~ation
of A which allows Its dnect computation without
any need for cornpyting  A-1. This also provides a
deeper phymcal mslght  mto the structure as well as
a simple physical interpretation of matrix A.

The factorization of A is derived by using the
matrix identity

(C-XDY)-1 = C-l–C-lX(YC-lX–D-l  )-lYC-1

for inverting A-l, given by Eq. (46), as

A = v-~ – D-~&iS-~ED-~ (47)
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where S = SD- ‘~~ – A. This inversion, in addi-
tion to the nonsingularity of A- 1, also requires that
the matrix S be nonsingular (note that, V is pos-
itive definite and hence D-l exists.) It should be
mentioned that there are other possible forms of A
which only require the nonsingularity of A -1 11].[
The above expression of A can be further simplified
by noting that

Also, from Eqs. (43) and (45), we get

D-it’ = [~filZN(~~)-l~~ZfilWN,  O, . . . . O]

71t = D-it? = [PN,N+l WN, O, ,.., 0]dl?6x5N
(49)

Note that, from Eq. (49), we have

s=&Rt–A (50)

which implies that S is a rank one (in block sense)
modification of matrix d i.e, S differs from A only
in the leading element. ~he above factorization of
A can be written in form of Schur Complement as

A = G–7?TS-17? (51)

If a matrix Z3 is defined as

[ 1.C3= s R,Ri g
~$j#5N+6)x(5N+6)

then A is the Schur  complement of S in L3.

VI. Complexity of Serial and Parallel
Computation of A
A. O(N)  Serial  Computation

For the sake of space, we only discuss the com-
putation of A by exphcit  computation and inversion
of A-1. Note that, similar results can be also ob-
tained by direct. computation of A from Eq. (51)
and using Eq. (50). However, as will be discussed
below explicit com utation of A-1 rather than A

b“provides a greater e clency in both serial and par-
allel computation.

The most computation-intensive kernel in both
operator application of M -1 and computation of
A -1 is the computation and inversion of matrix A.
The matrix A and its elements are given as

A = ~idiag [Bi, Ai, B~-l]

Ai = W/(l,~l  + ~/_lI,lll~i-l)Wi i = N to 1 (52)

B –1— –W~I~lPiWi~l  i= N- 1 to 1 (53)

From Eqs. (52)-(53) the elements of matrix A can
be computed in O(N) steps. Efficient computation
of matrix A by using optimal frame for projection
of Eqs.(52)-(53)  is discussed in [9].

The explicit computation of A -1 from Eq. (46)
can be performed in O(N) steps as follows. The
computation of A-’& corresponds to solution of the
system

Afl=E (54)

for fl. This represents the solution of a SPD block
tridiagonal  system for six right-hand side vectors
which, by using the block LDL~ algorithm, can be
obtained in O(N) steps. Given the sparse structure
of$c  (see Eq. (43)), the computation of$tfl  can be
red uced to

where &fi c~6x 5 and ~Nd?5x6  are the first elements
oft’ and fl (note the ordering of these matrices, e.g.
t? in Eq. (43).) The matrix-matrix multiplication
in Eq. (55) can be performed with a cost of O(l).
The matrix A -1 can be then obtained by adding
two 6 x 6 matrices with a cost of O(l). Finally, A
is obtained by a 6 x 6 matrix inversion, resulting in
an O(N) complexity for the overall computation.

The most computation-intensive part of block
LDL; algorithm is the factorization of the block
tridiagonal.  matrix since it re uires the inversion of

?)5 x 5 matrices. However, for oth the operator ap-
plication of M -1 and computation of A-l this fac-
torization needs to be performed only once. This
clearly demonstrates the synergism between the op-
erator application of M - 1 and computation of A- 1
since once this factorization is obtained for operator
application of M-1, the computation of Eq. (54)
can be performed with a much greater efficiency.

B. O(Log N) Parallel Computation

The computation of elements of matrix A from
Eqs. (52)-(53) is fully decoupled for i = N to 1.
Thus, by using O(N) processors, this computation
as well as required projections can be performed in
0(1) while involving only nearest neighbor commu-
nication among processors [9].

The block LDLt algorithm, while highl  effi-
fcient for serial solution of block $ridia  ona sys-

%hyw&,terns, seems to be str?ctly  se uentlal an
1there is no report on lts para lehzation.

the Block Cyclic Reduction (BCR)  algorithm [15]:
while less competitive for serial computation can
be efficiently parallelized.  By using the BC~ al-
gorithm, the system in Eq. (54) can be solved in
O(Log N) steps with O(N) processors. The com-
putation of Eq. (55) and the final matrix addition
for computation of A- 1 as well as its inversion can
be each performed in O(1) with one procexsor, i.e.,
in a serial fashion. This results in a complexity of
O(Log N) + O(1) for a parallel computation of A
with O(N) processors which indicates a both time-
and processor-optimal parallel algorithm.
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It should be emphasized that efficient parallel
solution of block tridlagonal  systems is the ke to an

Yefficient parallel computation of Schur Comp ement
f ac to r i za t i on  o f  M -1 ,  A- 1 and A. Motivated  bY
this fact, we have developed a more efflclent vari-
ant of the BCR  algorithm [21 ,22] which is partic-
ular suitable for implementation on coarse

f ’ ”MI#D arallel  archite$t  ure since It slgmficant  .~?e~
1!duces t e communication overhead by provl.dmg a

high degree of overlapping between communication
and computation [16]. However, an even further ef-
ficiency in parallel implementation of OSC s~heme
can be achieved by exploiting the synergism  in op-
erator application of M -’ and the computation of
A-l. In the operator application of M - 1 the mul-
tiplication of A- * by a vector is needed. This cor-
responds to the solution of a system as:

(56)

for some vectors X and Y. Now, (54) and (56) can be
combined and solved as a linear s stern with seven

i“~ight-hand  side yec~ors. This com Inatlon not only
increase the gram size but also reduces the amount
of communication in the parallel Implemental.lon.

VII. Discussion and Conclusion

We presented a new factorization technique for
computation of A-l and A. This technique results
in Schur Complement factorization of both A-l and
A and subsequently new O(N) algorithms for their
computation. These O(N)  algorithms are highly
efficient for parallel computation. To our knowl-
edge, they re resent  the first algorithms -that  can

f’be fully para lellzed, resultlng  m both t?me- and
processor-optimal arallel  algorithms. Using these

8algorithms, the O C scheme can be implemented
with  optimal efficiency in both serial and parallel
environment.

However, in addition to their theoretical si nif-

Sf
icance,  these algorithms are also hi hly efficien for
practical implementation on MIM parallel archi-
tectures. We have implemented the parallel O(Log N)
algorjthm  for computation of forward d namics of

{a serial chain by using the Schur Comp ement fac-
torization of M -1 on a Hypercube architecture [16].
Our results clearly validate the efficiency of this fac-
torization of M

-1 for ractical  parallel implemen-
tation. However, as $scussed  ~n $VI.A,  one can
expects an even rester efficiency in the parallel im-

fplementation  of he OSC scheme.

The manifest of Schur Complement in factor-
ization of M

-1, A-1 and A provides a unified frame-
work not only for t~eir  computations but also for
their physical interpretations [1 1]. In fact, we strongly
believe that the ph sical insi ht provided by these

i“%factorization can ead to a etter understanding
of the control schemes. The exploitation of this
physical insight in the design of task space control
sch~mes as well as the practical real-time,. paral-
lel implementation of the OSC sc~leme by usm the

?algo~ithms  of this paper will be discussed in orth-
comlng reports.
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Nomenc la tu r e

N

Pi,j

?ni
J i

hi, ki

Qit Qi, Qi

ri

(AJi, WiE323

Vi, Ui&P

fi, niE!U3

H i

Ii,jc326  ‘6

Number of Degrees-Of-Ileedom
(DOF)  of the system
Position vector from Oj to Oi,
Pi+l,i =  Pi
Mass of link i
Second moment of mass of link i
about its center of mass
First and Second Moment of mass
of link i about point Oi

Position, velocity, and
acceleration of joint i
Applied (control) force on joint i
Angular velocity and acceleration
of link i
Linear velocity and acceleration
of link i, point Oi
Force and moment of interaction
between link i-1 and link i
Spatial axis (map matrix) of
joint i, Hi~?R6Xk  for a joint
with k DOFS
Spatial Inertia of body i about
po in t  O j ,  Ii,i = Ii

[ ‘1Ii = $ ~h~U

(t denot’es tr;nspose)

Spatial velocity of link i,

point Oi

Spatial acceleration of link i,

[1F i =  ~ CR6 Spatial force of interaction
i between link i-1 and link i

FN~l# Externaf  spatial force acting
on the End-Effecter (EE)

V’+,, VN+1E9Z6 EE Spatial velocity and
acceleration, point ON+I

Global Quantities, i = N to 1.
ME$@xN

7c~6xN

?/ = Diag{Hi}

X = Diag{1i}#Nx6N

Q = Col{Qi}~XN

Q = col{Qi}#’

Q  =  COl{~i}&RN

r = CoI{I’i}cRN

V  =  COl{Vi}&R6N

V  =  COl{Vi}&326N

.F =  COl{Fi}S@N

point Oi

U* 1+1

4+1

k-ink  I

0 ,

Symmetric Positive Definite

(SPD)  mass matrix
Jacobian Matrix
Global matrix of spatial
axes, H&RGNx  N for a
system with 1 DOF joints.
Global matrix of spatial
inertia
Global Vector of joint
positions
Global vector of joint
velocities
Global vector of joint
accelerations
Global  vector of applied
joint forces
Global vector of spatial
velocities
Global vector of spatial
accelerations
Global vector of spatial
interaction forces

1 FI

Figure 1. Links, Frames, and Position Vectors
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